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Search, Failure, and the Value of Moderate Patience 
 

1 Introduction 

When firms need to solve complex and novel problems, they face a managerial di-

lemma: As complexity results in high-dimensional solution spaces with numerous local 

optima, firms must search broadly for good solutions (Simon (1962); Levinthal (1997)). 

Under conditions of genuine novelty, on the other hand, action-performance links are 

largely undefined, and firms often cannot but evaluate potential solutions through “on-

line” experiments, i.e., by implementing an alternative and observing its performance 

(Gavetti and Levinthal (2000)). Yet while such experiential learning creates new knowl-

edge, it comes at a high risk of failures. Both intuition and various accounts in the aca-

demic (e.g., Fleming (2001); Thomke (2003); Cannon and Edmondson (2005)) and 

practitioner (Farson and Keyes (2002); Petroski (2006)) literatures thus suggest that 

successful innovation requires patience, i.e., persistence despite failures.1 

Consider, for illustration, the well-known anecdote of how Thomas A. Edison de-

signed the first commercially useful incandescent light bulb (Israel (1998)). While 

searching for a high-performing configuration of the various interdependent design ele-

ments (which eventually included using a U-shaped carbon filament in an oxygen-free 

environment), Edison experimented with thousands of alternative design variants, ap-

preciating the numerous failures he experienced (“I have not failed. I’ve just found 

10,000 ways that won’t work”) and committing himself to being patient (“I am not dis-

couraged, because every wrong attempt discarded is another step forward”).  

Hence, this line of reasoning suggests that patience is positively linked to innova-

tion – firms that continue to search despite experiencing failures will experiment with a 

higher number of alternatives and are thus more likely to identify innovative solutions. 

But is patience generally beneficial? And what performance trade-offs are associated 

with different levels of patience?   

The issue of choosing a degree of patience relates to a broader class of problems 

that go beyond the challenge faced by firms that are experimenting with different design 

variants. Similar to complex technologies, firms as a whole have been conceptualized as 

systems of interdependent activities (Milgrom and Roberts (1995); Porter (1996); Sig-

                                                 
1 The notion of “patience” comes with a number of (slightly) different connotations. In the course of this 
paper, it is conceptualized as the perseverant active search despite failures, rather than the passively wait-
ing for an unpleasant situation to pass by. 
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gelkow (2002); Gavetti and Rivkin (2007)). Managers within firms are seen as trying to 

find coherent and high-performing sets of activities. Yet when an environmental shock 

deteriorates their existing configuration, firms may have to experiment with completely 

new courses of action. How patient should firms be when searching for new activity 

configurations? A similar problem arises for new ventures. Start-up firms have to en-

gage in a range of activities before they can launch (Garud and Van De Ven (1992); 

Ravasi and Turati (2005)). Yet in emerging industries, business models and knowledge 

about successful practices are not yet established. Again, what are the implications of 

exhibiting different levels of patience when searching for a set of good activity choices?  

To shed light on these issues, this paper draws from two related but somewhat 

separate literatures. One stream of work has generated insight into the role of failure and 

patience in innovation (e.g., Vincenti (1990); Petroski (1992); Thomke (1998); Lee et 

al. (2004)), but does not speak to how patience affects the search processes that lead to 

performance. The other stream has modeled problem-solving search in complex and 

novel environments (e.g., Levinthal (1997); Rivkin (2000); Winter et al. (2007)), but 

has largely assumed that firms can evaluate new alternatives through “offline” analysis 

(i.e., without having to implement them), whereas the notion of “online” trials has re-

ceived little attention (for an exception, see, e.g., Gavetti and Levinthal (2000)). In con-

sequence, little is known about how search is affected by different levels of patience, 

and whether and how the value of patience is contingent upon the complexity and nov-

elty of a problem.  

This paper provides some initial integration of these two literatures by embedding 

stylized features of failure and patience in problem-solving search into an agent-based 

simulation model. The model contains firms that face complex and novel problems and 

that search for better alternatives to their current solutions. By controlling how many 

failures firms are willing to tolerate, I can systematically analyze how patience affects 

the dynamics of search and, ultimately, firm performance. 

Even in this simple model set-up, counterintuitive effects can arise that show how 

patience and innovation interact in non-trivial ways. I find that moderate levels of pa-

tience – tolerating some degree of failure before abandoning a search path and starting 

over – do promote broad and effective search. Also, the more complex and novel a 

problem is, the more distinct this benefit of moderate patience becomes. High levels of 

patience, in contrast, can have unintended effects and even decrease performance de-

spite further increasing the overall degree of exploration. This result arises as firms fail 
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to confine the exploration that patience brings about, instead searching rather erratically 

and “drifting” away from potentially good solutions. Furthermore, as translating the 

gains of patience into performance improvements requires time, low levels of patience 

that result in more local search are generally optimal for shorter time frames. 

The results of this paper relate to the oft-cited trade-off between exploration and 

exploitation (Holland (1975); March (1991)). They suggest that in order to gain insight 

into the link between patience and innovation, paying attention to how patience trans-

lates into exploration is necessary, but not sufficient. Rather, attention must be paid to 

how patience affects the process by which the exploration of a novel context will even-

tually be replaced by the exploitation of the newly identified opportunities. The findings 

also suggest that, if managers seek to boost innovation, trying to act upon their organi-

zation’s level of patience with respect to affecting this transition is more valuable than 

merely trying to increase the sheer amount of search. 

2 Literature and propositions 

2.1 Prior research on failure and patience in innovation 

Given the costs and wasted efforts that failed experiments entail, problem solvers 

will set a limit to how many failures they are willing to tolerate. But what determines 

this level of patience? Clearly, one factor is personality. For example, the high degree of 

persistence that can often be observed among entrepreneurs or engineers (Garud and 

Van De Ven (1992); Forbes (2005); Lowe and Ziedonis (2006)) is typically attributed to 

behavioral traits such as overconfidence, optimism, passion, or foolishness (Kahneman 

et al. (1982); Baron (1988); March (2006)). Most other individuals, in contrast, tend to 

avoid courses of action in which failures are likely (Thomke (1998); Lee et al. (2004)).  

Another determinant is the experimentation environment that affects both the 

costs of failing and the costs and ease of reversing an experiment. The latter issue re-

lates to the fact that the distribution of alternatives is not known in advance, and that 

alternatives are usually encountered sequentially. Hence, if a decision maker hopes to 

find an even better alternative, he may discard his current solution despite the alterna-

tive being among the best in the population. If he is able to return to an option that has 

been permitted to “pass by”, he is said to “recall” the alternative, thus reversing the pre-

vious experiment(s) (Gigerenzer et al. (1999)). Consider, for example, a software de-

signer. If she finds that her recent experiments have deteriorated the performance of the 

project, she may easily revoke an old version that she knows has a satisfactory perform-
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ance. In this case, the cost to recall will only pertain to the time invested into making 

and testing the (eventually fruitless) modifications. A firm that is unsatisfied with its 

performance after an acquisition, in contrast, can likewise recall a previous state. How-

ever, the degree of sunk costs and the time required to “un-do” the investment will be of 

a different order of magnitude. In consequence, patience will typically be higher in a lab 

environment, where experiments are frequently undertaken with the knowledge that 

they may fail, whereas in most organizations, there is high pressure to avoid failure 

(Denrell and March (2001); Thomke (2003); Lee et al. (2004)).  

A third determinant relates to the time horizon. In basic R&D, for example, it is 

common wisdom that – in order to explore freely and broadly – problem solvers need 

sufficient time, during which they are willing to tolerate longer periods in which their 

search efforts may not bear fruit. On the other hand, consider product development in a 

fast-paced environment (Bourgeois and Eisenhardt (1988); Eisenhardt (1989); Fine 

(1998)). Here, decisions need to be made quickly, and product designers or managers 

are usually given little time to demonstrate the feasibility of a concept and improve the 

performance of the initial prototypes. Rather, by techniques such as “concurrent engi-

neering” or “front-loading” (Loch and Terwiesch (1998); Thomke and Fujimoto (2000); 

Loch et al. (2001)), firms are trying to speed up the search process and evaluate the po-

tential of a product early on. In this context, product designers may not be able to ex-

hibit much patience for tinkering around with a concept. Instead, they may have to make 

the best out of a given idea and limited time, i.e., exploit a current concept as efficiently 

as possible. 

But why, in the first place, should firms be patient? One major advantage of on-

line experiments, despite the failures they may entail, is that they generate knowledge 

when the paths of cause and effect are uncertain (Allen (1977); Thomke (1998); Flem-

ing (2001); Thomke (2003)). Hence, failures are appreciated as they often denote an 

interim stage on a problem solver’s journey of knowledge creation, and tolerating them 

may be necessary to accumulate a “sufficiently” large and focused body of knowledge 

(Popper (1959)). Vincenti (1990)), for instance, gives detailed insight into the processes 

of knowledge creation in the early days of the aviation industry: As engineers faced the 

challenge of designing airfoils that exhibited the desired lift and drag needed for a par-

ticular aircraft, they tested hundreds of different airfoils in an online manner. Only after 

experience had generated sufficient insight into what worked (and what didn’t) under 

which conditions, aerodynamic theory could be derived which could then substitute for 
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many online trials. In other words, further alternatives could be evaluated in an offline 

manner, i.e., without the risk of failures. A different appreciation of failure in engineer-

ing design is given by Petroski (1992); 1994); 2006)), who points out for various cases 

from engineering history how multiple failures often proceeded the evolution of a suc-

cessful design. In his reading, failures can act as a stepping stone towards more break-

through solutions – by triggering further search that may lead to the conception of high-

performing designs which might not have been cognitively conceivable without taking 

the intermediate steps that proved to be failures. In sum, these arguments suggest a posi-

tive relationship between patience and performance: 

Proposition 1a. Higher levels of patience lead to broader search that will result in 
higher performance in the long run. 

However, some research also points out that the value of failure not only stems 

from creating knowledge or acting as a stepping-stone, but from the fact that it can trig-

ger change. For instance, failures may convince problem solvers to abandon their cur-

rent search path and try other routes instead (Petroski (1992)). In the design process, for 

example, “the final version is [sometimes] closer to the first than any of the intervening 

versions” (Petroski (1992, p.77)). Hence, if a chosen search path is a dead end, high 

patience – often driven by an escalation of commitment – may translate into extensive 

search, but still result in the eventual failure of the particular project (Biyalogorsky et al. 

(2006); Välikangas (2007)). Hence, understanding failures becomes important to im-

prove performance (Thomke (2003)): As “products are the result of as many failed ex-

periments as successful ones [,] an innovation process […] is at least partially based on 

‘accumulated failure’ that has been carefully understood” (Thomke (2003: p. 27)). In 

other words, failures need not only be endured, but the resulting knowledge must be 

utilized to correct one’s actions (Mach (1905)). Firms, however, often possess no sys-

tematic culture and process for learning from failure, or fail to address this issue alto-

gether (Tucker and Edmondson (2003); Baumard and Starbuck (2005); Cannon and 

Edmondson (2005)), “sweeping” failures “under the carpet”. These considerations raise 

an alternative view:  

Proposition 1b. Higher levels of patience may not necessarily lead to higher organ-
izational performance if the firm fails to learn from the increased level of search.  

Finally, the above discussion also suggests that when the level of patience is low, 

a firm will search less broadly but explore only the neighborhood of its current solution, 

as it will not be willing to tolerate failures for an extended period of time. At the same 
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time, however, the local knowledge that is created enables the firm to take actions in 

this local context more quickly. To summarize: 

Proposition 2. Low levels of patience lead to local search and support the short-
term improvement of a firm’s current status. 

2.2 Prior research on search in complex and novel environments 

Due to bounded rationality (Simon (1955); Simon (1956)), firms need to search 

for new decision alternatives rather than optimize over a collectively known set of op-

tions as assumed in neoclassical theory (March and Simon (1958); Cyert and March 

(1963)). How, then, do the complexity and novelty of a problem affect the dynamics of 

search and the value of different degrees of patience? Following Simon (1962)), I con-

ceive of complex problems as systems that consist of a large number of elements that 

have many interactions. A well-known property of such systems is that with a rising 

number of interactions between its elements, local peaks – internally consistent configu-

rations of the system elements that cannot be improved through incremental changes – 

proliferate (Kauffman (1995); Levinthal (1997); Rivkin and Siggelkow (2007)). This 

increases the risk that constrained exploration will trap a firm on a low local peak, thus 

making broader exploration more beneficial. Furthermore, a higher number of system 

elements, ceteris paribus, makes problem-solving search more demanding as it signifi-

cantly increases the number of potential combinations of these elements. In other words, 

the space in which  problem solver conduct their search for good solutions expands as 

systems become larger (Simon (1996)). Hence, in order to identify superior configura-

tions, higher levels of search become crucial. With respect to the complexity of a prob-

lem, this suggests:  

Proposition 3. High interdependence between the system elements makes high lev-
els of patience more valuable. 

Proposition 4. A large number of system elements makes high levels of patience 
more valuable. 

But how does a firm know whether a new alternative is satisfactory? While prior 

modeling efforts have mainly focused on the generation of alternatives, i.e., the discov-

ery aspects of organizational search, the mechanisms by which new alternatives are eva-

luated have received little attention. Here, the dichotomy of “offline” and “online” eval-

uation (Lippman and McCall (1976); Levitt and March (1988); Gavetti and Levinthal 

(2000)) offers helpful assistance: Offline (or cognitive) evaluation refers to situations in 

which actors can evaluate the usefulness of an alternative through thought experiments, 
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calculations, computer simulations, or laboratory experiments, i.e., various mechanism 

that are close to Freud’s (1912)) notion of thinking as “internalized experimental action” 

(“internalisiertes Probehandeln”). Hence, a firm will only adopt an alternative if offline 

reasoning has proven the superiority of the idea. Online (or experiential) evaluation, in 

contrast, is characterized by a strong “try-it-and see” aspect, requiring a firm to imple-

ment an alternative in order to learn about its value. Online experiments are thus obvi-

ously more risky than offline assessments, as they require to leave the status quo and 

because the outcome of the trial is uncertain and may result in a failure. Hence, when a 

firm is faced with problems, but already possesses a certain degree of domain-specific 

knowledge, it can make a higher number of evaluations in an offline manner, decreasing 

the need to explore experientially. Because the firm can avoid adopting (eventually) 

fruitless ideas, it can efficiently build upon its existing knowledge and quickly improve 

its performance – a behavior much in line with March’s (1991)) notion of exploiting old 

certainties. If, in contrast, the firm has only little initial knowledge, it cannot but explore 

experientially initially, with higher levels of exploration proving more beneficial to 

generate broad knowledge. Regarding the novelty of a problem, this suggests: 

Proposition 5. High levels of initial knowledge in the domain of the search support 
the exploitation of a firm’s current situation and correspond to low levels of pa-
tience.  

Proposition 6. Low levels of initial knowledge in the domain of the search support 
the exploration of new alternatives and make high levels of patience more valuable. 

3 Model 

To study the impact of different degrees of patience on the dynamics of search, I 

develop a simple agent-based simulation model. Computational models have gained 

broad popularity in studies of organizational search and learning (March (1991); Levin-

thal (1997); Gavetti and Levinthal (2000); Mihm et al. (2003); Winter et al. (2007)) for 

a variety of reasons (Davis et al. (2007); Harrison et al. (2007)). One is that they allow a 

more rigorous analysis than verbal analysis, forcing the modeler to make all underlying 

assumptions explicit. In contrast to algebraic approaches, on the other hand, computa-

tional models allow to incorporate a richer set of features into the analysis. Although 

they cannot yield “exact solutions” like closed-form techniques, they allow to model 

conditions of complex interactions under which algebraic approaches such as, e.g., the 

supermodularity framework for studying complementarities (Milgrom and Roberts 

(1990); Milgrom and Roberts (1995)) would be intractable. Most importantly, however, 

the paper is concerned with the question of how patience affects problem-solving search 



8 

by decision makers that possess only bounded rationality. While exploring the underly-

ing dynamics of search can be easily achieved with computational models, analytic 

models tend to be concerned with equilibria and not with the question of how, or 

whether, they will be attained. 

The basic principle of agent-based simulation is straightforward (Macy and Willer 

(2002)): Decision-making agents (e.g., firms, managers, or designers) are confronted 

with controlled environments, they are equipped with heuristics to react to their envi-

ronment, and the resulting behavior is recorded over time. By varying the behavior of 

the agents and the structure of the environment, I can systematically explore the impact 

and interdependence of the variables under consideration. In the following, I thus de-

scribe the environment that my modeled firms face as well as their behavior with regard 

to search and patience. Although computational approaches grant high degrees of free-

dom, the model does not represent any real-world context. Instead, it contains stylized 

elements that are essential to shed light on the abstract problem under investigation, 

thus following an established tradition in computational research to develop simple yet 

insightful models (Cohen et al. (1972); Nelson and Winter (1982); Burton and Obel 

(1995)). As such, it is the aim of many computational models (including the one devel-

oped in this paper) to generate thought-provoking insight about problems for which 

common intuition may be deceptive or inconsistent. 

3.1 Complex problems 

I conceptualize firms as facing a set of interdependent decisions (Porter (1996); 

Levinthal (1997); Siggelkow (2002)). In order to explore and learn about this environ-

ment, a firm’s managers or designers need to make a multitude of decisions. For in-

stance, the designers of a jet engine might have to decide on the power of the engine or 

the materials that are employed to manufacture it. A manager, for instance, might have 

to decide about the firm’s product variety or about the features of its production system. 

Furthermore, many of these decisions interact with each other. For instance, the value of 

a powerful jet engine will depend on whether the structural properties of the material 

can endure the corresponding forces. Likewise, the value of flexible manufacturing ca-

pabilities will increase as a firm increases its product variety. 

In the model, each firm must resolve N decisions a1, a2, …, aN. Without loss of 

generality, I assume that each decision is binary. For instance, a1 might denote the deci-

sion to increase product variety (a1 = 1) or not (a1 = 0). In consequence, a firm faces 2N 
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possible configurations of choices, each of which can be represented by a binary vector 

a = (a1, a2, …, aN). 

In computational studies of firms as complex adaptive systems, it has become 

common to interpret the payoffs to configurations of interdependent choices as per-

formance landscapes (Levinthal (1997); Rivkin (2000)). A performance landscape 

consists of N “horizontal” dimensions (the N decisions that the firm needs to make), and 

one “vertical” dimension that denotes the corresponding performance of each confi-

guration. A performance landscape thus represents a mapping of each configuration a 

(each “point” on the landscape) to a performance value V(a) (the “height” of the 

particular point). 

I create performance landscapes with a variant of the NK model (Kauffman 

(1993); Kauffman (1995)) – stochastically, yet in a well-controlled manner. The NK 

model has been developed in evolutionary biology and has recently been applied to a 

number of organizational issues (e.g., Levinthal (1997); Rivkin (2000); Ethiraj and Le-

vinthal (2004); Lenox et al. (2006)). In the model, each decision ai is assumed to make a 

contribution ci to the performance V(a) that a firm receives from a particular configura-

tion of choices a. The contribution ci of each decision ai not only depends on how ai is 

resolved (0 or 1), but also on how K other decisions (a-i) are resolved that interact with 

ai. Hence, K controls the degree of interdependence between the decisions. When K = 0, 

all decisions are independent, and the performance contribution of each decision de-

pends only on how the decision itself is resolved. In this case, the performance land-

scape is smooth and contains only a single peak. In contrast, if K = N-1, the value of 

each decision depends on how all other decisions are resolved. Now, the landscape is 

highly rugged, exhibiting numerous local peaks. The identity of the K decisions a-i that 

influence the value of each decision ai is determined randomly for each performance 

landscape. Particular values for all possible ci’s are drawn from a uniform distribution 

over the unit interval, i.e., ci(ai; a-i) ~ u[0;1]. Finally, the value V(a) of a given set of 

choices a is calculated as an average of its N performance contributions, i.e., V(a) = 

[c1(a1; a-1) + c2(a2; a-2) + … + cN(aN; a-N)] / N. In sum, the parameters N and K thus al-

low to tune the complexity of a firm’s environment in terms of size (N) and interde-

pendence (K). 

The landscape metaphor allows an intuitive representation of organizational 

search: A firm inhabits – subject to its configuration of choices a – a particular point on 

the performance landscape. The firm searches for improvements to its current situation 
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by identifying and evaluating alternative configurations, i.e., it tries to reach high points 

on the performance landscape – configurations of choices that together create a high 

performance. Below, I describe how firms generate and evaluate new alternatives and 

how they react to failure that unknown alternatives may bring about.  

3.2 Problem-solving search 

In each period, each firm considers one alternative ã that differs in one decision 

from its status quo set of choices a. Thus, if the firm is currently at 1000 (given N = 4), 

it would have four alternatives available: 1001, 1010, 1100, and 0000. For instance, a jet 

engine designer might come up with the idea to modify the composite material that was 

used so far. In a similar manner, a manager might think about modifying the firm’s cur-

rent production system by introducing a new process control software. Among the N 

possible local alternatives, each manager picks one at random. Hence, this procedure for 

generating alternatives that are very similar to the existing configuration of choices 

represents a behavior of local search – a central feature in both theoretical (March and 

Simon (1958); Cyert and March (1963); Nelson and Winter (1982)) and empirical 

(Stuart and Podolny (1996); Rosenkopf and Almeida (2003)) accounts of organizational 

learning and adaptation. In other words, cognitive bounds prevent managers from com-

ing up with highly innovative ideas, i.e., with alternative configurations that differ in 

multiple dimensions from the status quo. (In the robustness section, I relax this assump-

tion and show that the main results also hold if the bounds on managers’ rationality are 

less severe.) 

Subsequently, the evaluation of a newly identified alternative ã can either proceed 

in a cognitive (offline) or experiential (online) manner. If the firm needs to explore ex-

perientially, it must first adopt the new alternative, i.e., move from point a to the nearby 

point ã on the landscape. Subsequent to the adoption of ã, the firm learns about its value 

V(ã), i.e., about whether the new alternative denotes an improvement over the previous 

configuration (V(ã) > V(a)) or not (V(ã) < V(a)). In the latter case, the firm has experi-

enced a failure. Independent from the exact performance of the new alternative, how-

ever, the firm has created knowledge about the performance implications of a configura-

tion that was (as yet) unknown. Should the firm encounter the same configuration again 

during the course of its further search, it could evaluate its relative attractiveness in an 
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offline manner.2 Finally, in the next period, the firm will generate another local alterna-

tive based on its new status quo set of choices. 

 The offline evaluation of a new alternative ã proceeds in the reverse order. Here, 

the firm can determine the value V(ã) of the alternative without implementing the idea. 

If the firm finds that the alternative denotes an improvement, i.e., if V(ã) > V(a), the 

firm will adopt it and move from point a to the nearby point ã on the landscape.3 If, in 

contrast, the value of ã is lower (or equal) than the value of the firm’s current alternative 

(V(ã) ≤ V(a)), the firm will discard the alternative and remain on its current “spot” on 

the landscape, generating another local alternative in the next period. 

Which alternatives a firm can assess offline is determined by the parameter 

KNOW (with 0 ≤ KNOW ≤ 1) that represents the firm’s initial degree of knowledge in 

the domain of the new problem. Thus, KNOW can be regarded as an inverse measure for 

the fundamental novelty of the problem that the firm needs to explore. The value of 

KNOW may be influenced by the fact that the firm has encountered related problems 

before. It may also be actively shaped by investing into human capital or new technolo-

gies that increase the scope of offline evaluation capabilities. Hence, when KNOW = 0, 

the firm starts its exploratory search without any offline knowledge, i.e., it initially 

needs to evaluate any alternative experientially. If, in contrast, KNOW = 1, then the firm 

has the expertise to assess the value of any potential alternative in an offline manner. 

For all intermediate values of KNOW, the firm possesses offline evaluation capabilities 

for the corresponding (randomly determined) fraction of all possible configurations. 

Once a firm has implemented a configuration and knows that this alternative can-

not be further improved by any local alternative, the search ends. In this case, the firm 

has reached a local peak on the landscape, which acts as a “competency trap” (Levinthal 

and March (1981); Levitt and March (1988)) and terminates a firm’s exploratory 

search.4 On the other hand, a firm can only be sure to have reached a local peak when it 

has generated enough knowledge to determine by means of offline reasoning that all 

local alternatives would yield a worse performance than its status quo set of choices. If 

                                                 
2 This assumes that a single evaluation act is sufficient to understand the (real) value of a new alternative. 
Issues such as search depth (Katila and Ahuja (2002)) or reinforcement learning (Sutton and Barto 
(1999)) are thus beyond the scope of this model. Also, it is assumed that no “organizational forgetting” 
occurs during the search process. All of these aspects might denote fruitful potential for further work. 
3 To focus exclusively on the dynamics of patience and search, the model assumes that superior (offline) 
alternatives are always adopted. It thus abstracts from many real-world intricacies involved in the adop-
tion of innovations such as, for instance, the role of promoters (Hauschildt and Gemünden (1999)). 
4 A local peak is a configuration of choices a with V(a) > V(ã) for all ã that differ from a in one decision. 
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there remains only one local alternative that the firm cannot assess offline, the firm can 

also not be sure that it has reached a local peak, as the unknown alternative might yield 

an even higher performance. (As I will show below, governing this tension may help a 

firm to avoid low local peaks.) 

3.3 Different levels of patience  

The uncertainty involved in an online evaluation poses the risk that the newly-

adopted alternative yields a lower performance than the previous one.5 Yet in order to 

explore uncharted areas on the landscape, firms may have to tolerate some degree of 

failure, i.e., they must be willing to accept a certain number of downhill moves on their 

quest for high points on the performance landscape. To represent different approaches 

of how firms might deal with this issue, I introduce a patience parameter, PAT, that de-

notes the maximum number of periods that a firm is willing to tolerate – while explor-

ing experientially – a performance that is below the performance of the best alternative 

encountered so far.6 Hence, the firm always “remembers” the present best alternative, 

and during its online evaluations, counts the number of periods in which it does not 

come up with an alternative that exceeds this benchmark.7 If a firm finds a better alter-

native, it sets its “failure counter” back to zero and uses the newly-found alternative as 

the new benchmark. If, in contrast, the firm does not come up with an alternative after 

PAT online trials, it will discontinue its current path of exploration and re-implement 

the benchmark alternative. For instance, if PAT = 1, the firm will be rather exploration-

averse and make no more than one online evaluation before returning to its previous 

alternative, should the trial be unsuccessful. If PAT = 10, in contrast, a firm is much 

more exploration-seeking and will tolerate up to 10 periods of underperformance. 

                                                 
5 In the model, I assume that firms have no assumptions about unknown alternatives. I also make no as-
sumptions about a firm’s risk preferences. The modeled firms do not seek nor try to avoid risky online 
trials subject to their current performance. They simply generate and assess new alternatives, independent 
of which “type” of evaluation (online, offline) is possible. 
6 Offline evaluations that do not yield a performance improvement are not counted as failures, because 
they do not require a firm to leave its status quo. Incorporating them into the failure count, however, does 
not qualitatively affect the results. 
7 I do not discriminate between different degrees of failure, which may be a fruitful avenue for further 
research, but count each period of below-benchmark performance as a failure, independent of whether 
performance is only slightly or rather significantly below the benchmark.  



13 

4 Results 

To study the effects of patience on the dynamics of search, I placed firms that dif-

fered in their level of patience (PAT) onto randomly chosen points of stochastically 

generated performance landscapes. Setting the firm’s degree of initial knowledge 

(KNOW) and the size (N) and interdependence (K) of the performance landscapes al-

lowed me to additionally tune the novelty and complexity of the environment. I then 

observed the firms’ behavior for 1,000 periods, by which time all firms had reached a 

peak. The performance of each firm was measured relative to the global peak in each 

landscape, i.e., firm performance was 1.0 if the firm reached the global peak. In order to 

ensure that performance differences were inherent to the model and did not result from 

any stochastic effects, I repeated each experiment for 1,000 different landscapes and 

calculated the average performance for each type of firm across all landscapes. All re-

ported performance differences were significant at the 0.001 level. 

The results are ordered as follows: First, I report the core result of this study – that 

moderate levels of patience are beneficial, whereas too much patience will be futile and 

will even reduce performance – and describe the mechanisms that are driving it. I then 

show how this result is contingent upon the complexity and novelty of the firms’ envi-

ronment. The robustness of the findings is discussed at the end of this section. 

4.1 Core result: The value of moderate patience 

The firms that I consider first need to explore a completely novel (KNOW = 0) 

and moderately complex (N = 8, K = 4) environment, while differing in their patience 

(PAT) (see Figure 1).  

< Insert Figure 1 about here > 

Consider, at first, a firm that has only little patience (PAT = 1). Its performance 

improves very quickly and then stabilizes. A firm with a medium level of patience (PAT 

= 5 or PAT = 10) requires more time to improve, but eventually reaches a higher per-

formance level. Finally, when the firm’s patience is even larger (PAT = 100), perform-

ance improves even more slowly and eventually reaches a level that is worse than what 

resulted from a lower level of patience. While these findings clearly support the discus-

sion about low levels of patience as summarized by Proposition 2, they seem to be am-

bivalent as far as higher levels of patience are concerned: Whereas Proposition 1a is 

supported for a medium level of patience, the findings given high patience favor Propo-
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sition 1b. To probe into the mechanisms that yield these performance implications, I 

repeated the same experiment for a broad range of the patience parameter. Figure 2 re-

ports various measures that give insight into how different levels of patience affect the 

dynamics of search.  

< Insert Figure 2 about here > 

A firm with little patience engages in online evaluations, but returns to the best al-

ternative that has been encountered so far after a single or a few trials that prove to be 

performance-decreasing. Hence, the firm never dares to move “far away” from its re-

spective benchmark configuration. It will thus explore only a small, local fraction of the 

overall performance landscape (Figure 2, left chart) and often “move back” to its re-

spective benchmark (Figure 2, middle chart). As the firm thus quickly creates knowl-

edge about a local part of the landscape, offline evaluation sets in that allows the firm to 

make only performance-improving changes anymore, drawing the firm uphill on a 

nearby local peak. In other words, because the overall degree of exploration is lower for 

a firm that has little patience, its initial position strongly determines where it will finally 

end up. Nonetheless, however, the firm can efficiently exploit its local exploration of 

the landscape and quickly improve its performance. 

For levels of moderate patience, the firm is willing to accept longer periods of un-

derperformance, i.e., it will automatically “move” more intensively on the landscape, 

letting it explore more broadly (Figure 2, left chart). Given the higher degree of explora-

tion, chances increase that the firm identifies superior alternatives, while the firm’s lim-

ited patience still frequently forces it to return to its respective benchmark configuration 

after a certain number of periods with below-benchmark performance has elapsed. At 

the same time, however, higher degrees of exploration also require more time to im-

prove performance than in the case of very low levels of patience (Figure 2, right chart).  

Yet when the level of patience is even higher, the results are intriguing. Although 

they yield even higher overall exploration of the landscape (Figure 2, left chart), they 

also make it very unlikely that the firm will return to a benchmark configuration (Figure 

2, middle chart). Because high levels of patience make the firm highly exploration-

seeking, it “drifts” around the landscape erratically, thereby getting exposed to a high 

variety of different alternatives. Thus, rather than focusing its exploration efforts, it 

chases after every idea that comes its way. When the firm eventually builds up a suffi-
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cient amount of local offline knowledge to start hill-climbing, it is at a rather “average” 

position and will consequently settle on a rather average local peak.8   

Hence, the less patient a firm is, the more quickly it can improve its performance 

by creating local offline knowledge, whereas the more patient it is, the more broadly it 

will explore and the more slowly its performance will increase. However, to exploit the 

higher degree of exploration in the latter case, a moderate value of patience appears to 

be most efficient. What makes moderate patience valuable is that it helps strike a 

healthy balance between loosening and confining search efforts: On the one hand, toler-

ating underperformance for a moderate number of periods may allow a firm to move 

“downhill”, entering a valley and reaching the “foothills” of a better peak, i.e., the firm 

may “escape” from the neighborhood of its current peak; on the other hand, the fact that 

patience is strictly limited forces the firm to still confine its exploration activities and 

create a critical amount of local (broadly defined) knowledge that can eventually be 

exploited, allowing the firm to move uphill. Very high levels of patience, in contrast, 

only further increase exploration in a time-consuming process, but yield no more gains. 

Rather, the firm fails to exploit the exploration that higher levels of patience entail and 

gets drawn away from potentially good configurations, only to end up on a rather aver-

age local peak. 

4.2 The impact of complexity on the appropriate level of patience 

Propositions 3 and 4, which are based on complex systems theory, state that a 

higher number of system elements as well as interdependencies between them will make 

higher levels of patience – by boosting exploration – more beneficial. Consider, first, 

the implications of interdependencies. Varying the degree of interdependence among 

the elements that the firm needs to explore, Figure 3 (right chart) finds partial support 

for Proposition 3: In the long run, higher degrees of interdependence do make patience 

more beneficial, yet medium rather than high levels of patience again yield the highest 

performance.9 In the short run, in contrast, low levels of patience always prove benefi-

                                                 
8 This behavior reflects – in accordance with behavioral accounts of organizational decision making – that 
only repeated failure will force a firm to give up its current path and make the major “move back” to 
some configuration that is distant both in space and time. However, once a firm can determine by offline 
evaluation that its current position is a local peak, the high opportunity costs of giving up a current situa-
tion will rather lead to organizational inertia (Greve (2003)). 
9 The general performance decline for higher levels of interdependence results from the rising number of 
local peaks that tend to, on average, trap firms on configurations with lower performance (Kauffman 
(1995)). 
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cial, independent from the degree of interdependence, thus yielding additional support 

for Proposition 2 (Figure 3, left chart).10 

< Insert Figure 3 about here > 

If complexity is high and patience is rather low, a firm will explore only a con-

fined neighborhood around its starting position: As complex environments contain 

many local optima (Kauffman, 1995), the firm will be likely to search in the neighbor-

hood of an average local peak to which it will get drawn once offline search sets in. 

While this is detrimental in the long run (Figure 3, right chart), it helps the firm to 

quickly improve its performance in the short run (Figure 3, left chart). If, in contrast, 

patience is very high, chances are equally high that the firm will have – during its rather 

random drift across the landscape – explored the neighborhood of an average peak that 

intensively (creating that much offline knowledge) that it will get drawn to this peak. 

Instead, a moderate level of patience allows maximizing overall exploration by giving 

up less promising paths before getting drawn to a peak. For lower levels of complexity, 

the level of patience matters less, as the number of local peaks is likewise lower, and 

chances increase that a firm can reach an above-average peak by either a restrained 

neighborhood search or by broad exploration (which, however, requires more time than 

having only a low level of patience). Thus, the more complex the environment, the more 

the firm should try to find a balance between impatience and patience, whereas being 

impatient (or even overly patient) is less detrimental in a less complex environment. 

Turning to the impact of system size, Figure 4 yields three main findings regard-

ing the performance advantages of higher levels of patience over the exploitation-

focused case of highly limited patience (PAT = 1): First, the “larger” a problem gets, the 

higher the optimal level of patience becomes; second, as systems get larger, the per-

formance advantage of higher levels of patience grows; and third, medium levels of 

patience again yield the highest performance, whereas overly high levels of patience 

prove detrimental. While findings one and two thus support Proposition 4, it is not sup-

ported by the third finding, which again supports the robustness of my core result. 

< Insert Figure 4 about here > 

What drives this impact of system size? As a higher number of system elements 

increase the search space that needs to be explored, firms need to allow for a higher 

                                                 
10 In Figure 3, I define “short run” as period 40, yet the results are insensitive to this particular choice. 
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level of patience to ensure that the exploration process is sustained for a sufficiently 

long time. Also, being patient proves to be more beneficial as larger systems contain 

more local peaks and prolonged exploration (higher patience) increases the chances to 

move towards one of the better ones. Nonetheless, independent from the size of the sys-

tem, the detrimental “drift” effect of being overly patient eventually sets in. To summa-

rize, then, larger systems increase the value of being patient as well as the notion of 

what denotes a “moderate” level of patience. 

4.3 The impact of novelty on the appropriate level of patience 

The experientially-searching firms above started their search without any offline 

knowledge. In many situations, however, a firm may have at least partial knowledge of 

a problem domain, e.g. when a technological shock has altered but not destroyed a 

firm’s existing competencies in a particular domain. In this case, the firm may be able to 

assess certain alternatives in an offline manner once it has generated them. To gain fur-

ther insight into the role of patience under these conditions, Figures 5 varies the firms’ 

initial knowledge. 

< Insert Figure 5 about here > 

First, consider the left chart in Figure 5 that reports the resulting performance val-

ues given a short-term planning horizon. It clearly points to the value of (1) having off-

line knowledge or (2) gaining it quickly. In the short term, fast exploitation of existing 

competencies and the identification of “sufficient” solutions are more valuable than a 

longsome exploration for superior alternatives. This finding denotes a clear support for 

Proposition 5: A firm that possesses a high degree of offline knowledge can make many 

offline evaluations and improve its performance directly and, hence, quickly. A firm 

with less initial knowledge, in contrast, will have to search experientially first and will 

exhibit a lower performance initially because it will experience some failures. Yet al-

though the performance discount for lower degrees of initial knowledge is severe, it can 

be mitigated significantly by very low levels of patience. Again, this supports Proposi-

tion 1: If a firm with little initial knowledge explores experientially but abandons its 

current search path after each (or only a low number of) period(s) of below-benchmark 

performance, it will quickly generate enough local knowledge to make hill-climbing 

improvements like a firm that started with high degree of domain-specific knowledge. 

Hence, the degree of initial knowledge need not be an obstacle for short-term exploita-
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tion if the firm chooses the right sampling strategy that supports a generation of offline 

knowledge that is geared toward the short term. 

However, if the firm’s planning horizon is geared towards the long run, the above 

wisdom is reversed (Figure 5, right chart). Now, broad exploration becomes valuable. 

Yet the higher the initial degree of knowledge, the less broadly a firm will explore as 

offline considerations will prevent it from implementing performance-decreasing alter-

natives.11 However, as shown above, tolerating failures is necessary to leave one’s local 

neighborhood and explore also more distant and possibly superior regions. A firm with 

less offline knowledge will (have to) make these mistakes and potentially be able to 

reap their benefits, whereas a firm with a higher degree of offline knowledge will more 

often be reluctant, and chances are higher that it remains in its initial region of the land-

scape. The lower a firm’s degree of knowledge is, in contrast, the better it can make use 

of it to increase overall exploration, and the more the level of patience matters. For the 

reasons discussed above, a moderate level of patience, as well as starting over when 

exploration during this interval does not pan out, is especially valuable as it will both 

broaden a firm’s degree of exploration and at the same time help the firm not to get 

stuck at lower local peaks when offline considerations finally take command. This find-

ing partially supports Proposition 6 and yields additional support for my core result. 

4.4 Robustness  

As shown above, the core result is highly robust with regard to changes in the pa-

rameters problem complexity, i.e., size (N) and interdependence (K), as well as the de-

gree of initial knowledge (KNOW). Here, I consider robustness with respect to a differ-

ent parameter, a firm’s search radius, which indicates how broadly the firm can search 

for new alternatives. Intuition suggests that if firms have a larger search radius, i.e., if 

managers face less severe cognitive bounds, they can come up with more innovative 

alternatives and will not benefit that much from patience to increase exploration. To test 

this idea, I considered firms that have a search radius of two (as compared to a search 

radius of one in Figure 1), i.e., that can identify new alternatives that differ in up to two 

decisions from their status quo.  

                                                 
11 I assume that only experimenting with an unknown alternative allows firms to experience a perform-
ance drop. Firms do not move down-hill on purpose, i.e., they do not implement alternatives which they 
know would yield a worse performance than their status quo. As firms have no cognitive understanding of 
the landscape, firms thus behave (intentionally) rational. 
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< Insert Figure 6 about here > 

As Figure 6 indicates, intuition is partially correct: A higher search radius de-

creases the performance differences between firms that have low levels of patience and 

those that have a moderate level of patience. Nonetheless, my core result – that medium 

levels of patience outperform both low levels and high levels of patience – proves ro-

bust again.12 

5 Discussion 

The issue of how alternatives are evaluated denotes a fundamental aspect of prob-

lem-solving search: Sometimes, a decision maker may evaluate an idea cognitively and 

free of risk; often, however, he may have to accept that he is “blind”, having to imple-

ment an alternative in order to learn about its value. Hence, when firms need to solve 

complex and novel problems, for instance when exploring a novel technology or a strat-

egy in a new business environment, they often cannot but take the risk of failures and 

search for a solution through trial-and-error experimentation. In consequence, a number 

of literatures – from engineering history (Vincenti (1990); Petroski (1992); Petroski 

(1994); Flyvbjerg et al. (2003)) to organizational research (Thornhill and Amit (2003); 

Starbuck and Farjoun (2005)) or psychological accounts of problem solving (Dörner 

(1997)) – yield plenty of cases that document failure that resulted from such online ex-

periments.  

Of course, as Levinthal (2005)) stresses, the dichotomy between offline and on-

line modes of evaluation is not a strict one. Rather, there is a large gray area between 

the two poles in which most evaluation processes occur. Online trials need not require 

giving up the current alternative entirely. For instance, individual markets, pilot plants, 

or subsidiary firms may serve as a “test area” and provide the experiential basis on 

which the firm evaluates a new proposal. In aerospace or automotive design, for in-

stance, wind tunnels are used to test the characteristics of new design alternatives, sub-

stituting for either the risky and costly (online) test of a full-fledged prototype or, on the 

other hand, the fully cognitive route of analytical analysis and computer simulations. As 

Levinthal (2005: 16)) further remarks: “In some sense, the issue of on- or off-line search 

becomes less a categorical distinction than a set of factors that influence the costs, risk, 

and possible accuracy of the evaluation process. Online search often entails a particular 
                                                 

12 Also, the other measures introduced in Figure 2 remain qualitatively similar when the search radius is 
higher and the degree of patience is varied. 
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sort of cost, the opportunity cost of not making use of established options. [. . . ] the 

degree to which current operations need [to] be disrupted by the need to evaluate a pro-

posed alternative influences how painful that trade-off is.” Hence, albeit only a stylized 

dichotomy, discriminating between cognitive and experiential evaluation remains help-

ful to gain insight into the dynamics of search. Whenever designers or managers need to 

solve complex and novel problems, the value of a particular search strategy depends 

crucially on which form of evaluation mechanism is possible.  

Furthermore, failure and patience are closely linked to a fundamental strategic 

challenge faced by any firm: the trade-off between the (short-term and less risky) ex-

ploitation of old certainties, and the (long-term and more risky) exploration of new pos-

sibilities (Holland (1975); March (1991)). Here, patience has been shown as a mecha-

nism that induces exploration by letting firms accept some performance-decreasing 

(down-hill) moves, thus contributing to overcoming the pitfalls of search that would 

otherwise be overly local. However, this does not guarantee effective search, as high 

levels of patience lead to excessive search, but yields only little gains, as “adaptive sys-

tems that engage in exploration to the exclusion of exploitation are likely to find that 

they suffer the costs of experimentation without gaining much of its benefit” (March 

(1991: p. 71)). However, firms may be able to balance exploration with exploitation by 

being determined to eventually abandon their current search path and to return to a pre-

viously encountered benchmark. Prior research has shown how organizational design 

may help firms to explore broadly but likewise stabilize around good decisions once 

they are discovered (Rivkin and Siggelkow (2003)). Here, I suggest that moderate levels 

of patience may have a similar function. On the one hand, they induce broad search, 

while on the other, they bound the search space such that “local” problem-specific 

knowledge can accumulate and eventually be exploited. 

In many cases, however, firms will have too little rather than too much patience, 

which may confer a long-term disadvantage due to the risk of getting stuck prematurely 

on a low local peak. Consider the current case of the big car makers that have to restruc-

ture fundamentally in order to adapt to a changing business landscape. In searching for a 

new strategy that can restore their long-term viability, however, these firms may have to 

endure some significant short-term pain, requiring a large amount of patience in order 

not to get discouraged (Denrell & March, 2001). But because of the immediate per-

formance feedback and public expectations to show good results quickly, these firms 

will most likely have less patience than might be necessary, a fact that can be 
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most likely have less patience than might be necessary, a fact that can be considered to 

drive out exploration quickly and prematurely force the firms back into exploitation.  

On the other hand, low levels of patience can also be beneficial. Even if a firm 

starts with little understanding of what works and what doesn’t, and has only little time 

available, an adequate (i.e., low) level of patience can help it create local offline knowl-

edge quickly and exploit its current position. For instance, a mechanism of this kind 

may be underlying concepts such as prototyping in software development (Thomke 

(1998); Loch et al. (2001)): Building (and potentially discarding) a high number of pro-

totypes helps to quickly build up knowledge about the value of different alternatives, 

and hence contributes to rapid exploitation rather than longsome exploration.  

Despite the abstract nature of the findings reported in this paper, they still have 

implications for managers that seek to affect their organization’s level of patience. For 

examples, measures such as appropriate recruitment policies, the installation of test 

plants, or funding pet projects might help to increase the level of patience that a firm’s 

decision makers are willing to exhibit, at least in those domains of the organization that 

are key to innovation. On the other hand, embedding constraints into critical search 

processes (e.g., milestones and review meetings in new product development projects) 

may serve to constrain the patience of organizational agents (e.g., of engineers) that 

might otherwise be tempted to explore overly broadly. 

While verbal discussions already abstract from many real-world intricacies, for-

mal modeling efforts go even further into this direction. This paper has been no excep-

tion, and various aspects deserve further attention. Here, I point to four potential ave-

nues. One is cognition. While early writings in the tradition of the Carnegie School have 

offered local search by boundedly rational decision makers as an alternative draft to the 

fully rational optimizer of neoclassical theory, current research is starting to treat a mid-

dle ground (Gavetti (2005)). Hence, even when faced with novel and complex prob-

lems, initially “blind” problem solvers may apply cognitive devices to interpret the 

knowledge that is generated about the landscape (Farjoun (2008)). Gradually, they 

might form cognitive maps that provide a “big picture” of a problem domain (Gavetti 

and Levinthal (2000)) or help to identify a “preferred” direction (Winter et al. (2007); 

Nelson (2008)). With their growing understanding of the performance landscape, firms 

might then adjust their patience and search behavior accordingly. On the other hand, as 

Rosenberg (1995)) remarks, it is a central characteristic of innovation that even pioneers 
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may lack vision. Further investigation of the role of intentionally rational behavior in 

problem solving thus appears to be promising. 

Another direction for further research concerns the issue of delayed feedback that 

has become known as the “credit-assignment problem” (Holland (1998); Denrell et al. 

(2004)). Often, the performance implications of a particular alternative may not be ob-

served instantaneously but only after some time has elapsed, during which the firm may 

have “moved on”. Performance feedback can also be noisy. How should a firm then link 

current performance feedback to past actions? Also, performance feedback may be am-

biguous, requiring multiple trials to establish a reliable link to performance. Further-

more, new alternatives may have both short-term and long-term effects. In evaluating a 

new drug, for instance, some effects may be assessable instantaneously, while knowl-

edge about other effects can sometimes only be established through long-term studies 

(Nelson (2008)). Incorporating such considerations into models of search would make 

them more intricate, yet also more realistic. 

A third limitation of this study pertains to the fact that it has been rather non-

organizational. Most processes of problem-solving search and evaluation, however, oc-

cur in an organizational context that is characterized by a division of labor, by hierar-

chical relationships, and by various other formal and informal aspects of organizational 

reality (March and Simon (1958); Cyert and March (1963)). Despite a few exceptions 

(Rivkin and Siggelkow (2003); Siggelkow and Rivkin (2005)), models of adaptive 

search have largely shied away from applying an explicit organizational perspective. 

However, in order to bring our models closer to how organizations are actually evaluat-

ing alternatives, more work along these lines will be necessary (Gavetti et al. (2007)). 

Finally, the paper has explicated why overly high levels of patience, despite in-

ducing a significant amount of search, may have dysfunctional effects. Even under the 

“laboratory conditions” of the computational model developed above, i.e., in the ab-

sence of selection pressures or resource constraints, overly high levels of patience yield 

no further gains but rather reduce performance. Clearly, introducing a selection mecha-

nism or equipping firms with exhaustible resources and cost considerations, all of which 

could be considered to dynamically affect the level of patience, might help shed light on 

further relevant aspects of patience in organizational search and denotes potential for 

further work.  
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6 Conclusion 

Despite the above limitations, this paper has introduced an explicit notion of on-

line experimentation into a model of search, shedding light on how patience is linked to 

innovation. I find that contrary to what intuition might suggest, high levels of patience 

are little desirable despite promoting a high level of exploration. Choosing a level of 

patience rather reflects a decision about how firms weigh exploration and exploitation. 

If managers want their organizations to innovate, they must embrace exploration of new 

possibilities – and be willing to tolerate failures that will inevitably occur along the way. 

At the same time, they also have to contain exploration, as it competes with the exploi-

tation of the newly generated opportunities. If one seeks to boost innovation, achieving 

a healthy balance between the two becomes necessary. Under a robust set of assump-

tions, this can be a matter of moderate patience.  
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Figure 1: Performance implications of different levels of patience 
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Figure 2: Impact of different levels of patience on the dynamics of search 

  

This figure reports the average firm performance over 1,000 landscapes with N = 8, K = 4. Firms differ in their 
level of patience (PAT). All firms start their search without any offline knowledge (KNOW = 0). 

The chart on the left reports the fraction of all different performance contributions (ci) that a firm assesses during 
its search. The chart in the middle reports the number of times that firms give up their search path and “start 
over” after persistent underperformance. The chart on the right illustrates the number of periods that firms with a 
higher level of patience (PAT) require to outperform a firm with a low level of patience (PAT = 1). All results 
are averages over 1,000 landscapes with N = 8, K = 4. Firms search for 1,000 periods. They differ in their level 
of patience (PAT) and start their search without any offline knowledge (KNOW = 0). 
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Figure 3: Short-term and long-term effects of different levels of interdependence and 
patience 

 

  

 

 

 

 

 

 

 

 

 
 

Figure 4: Effects of different problem dimensions 
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This figure reports the average firm performance in period 1,000 over 1,000 landscapes with N = 8 and different 
degrees of complexity (0 < K < 7). Firms differ in their degree of patience (PAT) and start their search without 
any offline knowledge (KNOW = 0). The left chart reports the performance in the short run (period 40). The 
right chart reports long-run performance (period 1,000). 
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(N), while the degree of interdependence is set to K = N-1. All firms start their search without any offline know-
ledge (KNOW = 0).  
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Figure 5: Short-term and long-term effects of different levels of initial knowledge and 
patience 

  
 

 

 

 

 

 

 

 

 

 
 

Figure 6: Performance implications of different levels of patience given a higher search 
radius 

 

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

Pe
rf
or
m
an

ce

Period

PAT=100

PAT=10

PAT=5

PAT=1

 
 
 
 

 0
 10

 20
 30

 40
 50

 60
 70

 80
 90

 100

 10 20 30 40 50 60 70 80 90 100

0.66
0.68
0.70
0.72
0.74
0.76
0.78
0.80
0.82
0.84
0.86
0.88

Performance

Knowledge [%]

Patience

Performance

 0
 10

 20
 30

 40
 50

 60
 70

 80
 90
 100  10  20  30  40  50  60  70  80  90  100

0.84
0.85
0.86
0.87
0.88
0.89
0.90
0.91
0.92
0.93
0.94
0.95

Performance

Knowledge [%]

Patience

Performance

This figure reports the average firm performance over 1,000 landscapes with N = 8 and K = 7. Firms differ in 
their level of patience (PAT) and their degree of initial knowledge in the problem domain (0 ≤ KNOW ≤ 1). The 
left chart reports the performance in the short run (period 40). The right chart reports long-run performance (pe-
riod 1,000). 

This figure reports the average firm performance over 1,000 landscapes with N = 8, K = 4. Firms differ in their 
level of patience (PAT). All firms start their search without any offline knowledge (KNOW = 0). Firms are less 
bounded in their rationality and have a search radius of 2, i.e., they can generate alternatives that differ in up to 
two decisions from their status quo set of choices.


